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Extension of Berenger’'s PML for Bi-Isotropic Media

S. Gonalez Garta, I. Villo Perez, R. @Gmez Marin, and B. Garia Olmedo,Member, IEEE

Abstract—An extension of Berenger's perfectly matched layer & = (x — jx)/c and ¢ = (x + jx)/c, with ¢ = 1/,/oco
(PML) absorbing boundary conditions to adapt bi-isotropic me-  peing the free-space light speed.

dia is formulated. The method is developed under simple alge-  The gispersion relation is obtained by enforcing a non-
braic conditions and validated with the finite-difference time- . . .S
domain method (FDTD). trivial value of the solution of (2) and (3), obtaml_ng two
wavenumbers for each frequency: one for the right-hand
polarization(k,.) and the other for the left-hand polarization
(k_): bt = (w/c)(cosf£r,), With siné = x, = (x//Evttr)s

ke = (K/\/Eritr), @ande, and p, the relative permittivity and

|. INTRODUCTION permeability of the material, respectively.

Index Terms—Absorbing boundary conditions, bi-isotropic me-
dia, FDTD method, perfectly matched layer.

HE propagation of waves in bi-isotropic media has be-
come a topic of interest during recent years [1]. Starting [1l. EQUATIONS FOR THE BiPML MEDIUM

from previous extensions of Berenger's perfectly matched Following Berenger's ideas [2], together with the general

layer (PML) absorbing boundary conditions [2] for aniSOtmpiFnethod presented in [3] and [4], the BIPML medium is defined
media [3], [4], in this letter we propose a PML mediu h that the six- I fields 7 = in thi
(BiPML) to adapt bi-isotropic media. It has been validated al ch that the six-componemsplit fields A, and & in this

. . - . . edium are
tested through an implementation of the finite-difference time-
domain method (FDTD) to simulate monochromatic wave &y =(Cays Canr Cyzr Cyms Camy Cay) (5)
tion in th dia. -
propagation in these media s = Ry Paoss e Py s o)t (6)

Il. MAXWELL'S CURL EQUATIONS IN BI-ISOTROPICMEDIA  related to the three-componesgmpactieldsé = (e, ¢y, ¢ )
Waves propagating in source-free bi-isotropic media camd h = (hs, hy,h.)" through
be decomposed into a sum of left- and right-hand elliptical

polarized waves [1] of the form . o , ,
e=C-¢, h=C-hy,, C=

S O =
S O =
o = O
o = O
= O O
= O O

T(7, 1) = G/t FD (1)
(7, 1) - @
with a complex amplitudel,, frequencyw, and propagating Let us assume that the propagation into the BiPML of the
in the 7 direction with wavevectok = kn, which is assumed split fields can also be decomposed into functions of the form
to be real (lossless media) for simplicity. For these waves, . L .
Maxwell’s curl equations can be written as [1] U, (7,8) = U o 777 8

(2) with 0., being the complex amplitude and the complex
(3) Wwavevector in the BiPML medium. These functions will be
. . made to fulfill equations similar to (2) and (3), but including
where £ = (E,,E,.E.)", H = (H,,H,, H.)", with the anisotropic lossy terms as in [2], as well as a bianisotropic
superindex indicating the transposition of matricek. is the behavior through the use of two complex matricesnd A*,

—jopH — juCE =—jK - E
wsE—i—ijﬁ :—jK-ﬁ

wavevector matrix given by in the following manner:
oy w0 ) @ juelo -8, 458, + juwEA T, =—iG, T, (10)
—k, .

e and ;. are the real dielectric and magnetic constants, éndvhere I, is the nth-order identity matrix, G, the split
and ¢ are the parameters describing the bi-isotropic behavi§gVevector matrix

of the medium. These latter can be expressed in terms of the 0 0 Yy
real Tellegen(x) and chirality (x) parameters [1] through 0 —v. O
Manuscript received March 16, 1998. This work was supported in part by é =G, - C« Gs = Yz 0 0 (11)
the National Research Project TIC-96-1072-C04-01. s 5o I8 0 0 —v
The authors are with the Electromagnetic Group of Granada, DefsicaF 0 5 0
Aplicada, Facultad de Ciencias, University of Granada, 18071 Granada, Spain. *
Publisher Item Identifier S 1051-8207(98)07958-6. Yy 0 0

1051-8207/98%$10.001 1998 IEEE



298 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 8, NO. 9, SEPTEMBER 1998

o is the (6 x 6) real diagonal matrix anda™, it is found that the BiPML, in fact, supports attenuated
waves with wavevecto = (k,, ky, k(1 — j(o./we))).

, 0O 0 0 0 O
(8’ c. 0 0 0 0 Notice that the BiPML has turned out to be a bianisotropic
0 0‘ . 0 0 0 PML medium, which is reduced to Berenger's PML when the
o= 0 0 04 o 0 0 (12) Tellegen and chirality parameters of the original medium are
0 0 0 0 o, O null.
0 0 0 0 0 o
L . . V. IMPLEMENTATION AND VALIDATION
andc™ is a matrix with a similar form. ] ) ] ) - )
Finally, matrix A is given by With the aim of_te_zs_tlng the matchmg conditions with I_:DT_D,
we need an explicit-in-time difference scheme. For this, time
ay 0 0 domain versions of (2), (3), (9), and (10), valid for harmonic
CE)Z 0 8 fields, have been used. For instance for (3)
- a.
A=a-C, a= # (13) 5 5
’ 0 a, O oFE - wk= x OH
¥ —=VxH-—H-%— 17
0 0 (229 € at x c c at ( )
0 0 ay and for (10)
and similarly for A* = &* - C. All the elements of these Y A
matrices will be obtained in the next section by imposing els - o 7%
perfect matching of the BiPML and the bi-isotropic medium. L 1 - ‘
—R,-h.— 2—(—a+wn16) ctoCh,
C
IV. PERFECT MATCHING 1 . -~ Oh,
PERFECTMATOMING - -5 (xe=22) 0t e 18)
If a wave propagating in the bi-isotropic medium is incident 2c we ot
upon an interface with a BiPML medium, no reflection W“k/vith
occur at the interface for any angle of incidence, nor for any P P
frequency, if there is a perfect matching between both media. 0 0 0 0 il il
A sufficient condition is obtained by enforcing the continuity 9 9 dy dy
of the components of the field in the original medium with 0 0 3, 5 0
those of the compact field in the BiPML. For instance, for the 9 9 # #
interface planez = 0 T 0 0 0 0
. L 5= g g
(E = g)z:Ov (H = h)Z:O- (14) 0 0 0 0 _% _%
The continuity condition implies [3], [4]: 0 0 83 83 0 0
P . X X
1) phase ContinUitY(e]k'r:e]’y'r)Z:O = Yz Ikx,’}/y :klﬂ _i _i 0 0 0 0
with no restriction ony.; L dy Oy
2) amplitude continuityFy = ¢y, Hy = ho. (29)

- In order to impose cond|t|on-2), let us first gxtrmt) and V\{here it has been assumed that the values of all the parameters
€5, from (9) and (10), respectively, and obtain the compac :
are known at a given frequency.

fields&, andh, through (7). Then, extracting, andE, from ; . .
, . : .. The FDTD algorithm has been simply obtained by approx-
(2) and (3), we finally obtain a system of equations which E?nating the time derivative off andé; in (17) and (18) by

fulfilled for any Eo and Hy if second-order finite-centered differences, and the time deriva-

O AN 2 N . tives of H and &, by the following second-order backward
C. <Ie - qu> gs=0C- <IG - jE) g =K ( formula:
of 3/ (to) — 4f(to — At) + f(to — 24¢)
and = = .
ot (to) SAf (20)

~x N\ —1 -
C- <f6 —j0—> @ =C- <.f6 —ji> -a=1I5. (16)  The rest of the discretizations in (17) and (18) have been
wi we performed using a second-order two-node scheme through

The first equality of (15) holds i& and ¢* are related by finite centered differences and means [5]. The ratio between
the usual Berenger conditioft/¢) = (6*/u). Taking this the spatial increment and the time increméit/At) = 4 ¢
into account, and given that - C* = 215, (16) holds if has been found to provide stable results for the simulations
a=L(Is— j(6/we)) - Ct = a* = L(Is — j(6* Jwp)) - C*.  shown here.

At z = 0 the phase continuity 1), together with the last Since the BiPML is just a generalization of Berenger's
equality of (15), leads towr, = o, = 0 and~. = k.(1 — PML medium, all the details concerning the implementation
(o jwe)). of the BIPML (corners, conductivity spatial profile, numerical

Solving the dispersion relation for the BiPML mediunmeasurement of the reflection coefficient, etc.) are treated in
governed by (9) and (10), with the above values&o6*, a the same way as in [2].
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Fig. 1. Comparison of field profiles at the time step= 600 for a chiral medium withe, = 1, x4 = 1, x» = 0, and x, = 0.25, adapted
with a 100-cell BiPML.

Fig. 1 shows the spatial profile of th8, component of a conductivity from layer to layer, more abrupt in the 12-cell
monochromatic wave propagating in a two-dimensional (2-2pse than in the 100-cell case.
chiral medium withe, = 1, . = 1, x, = 0, andx,. = 0.25.
Such a wave is composed of a right- and a left-hand elliptical
polarized plane wave, with respective wavelengihs= 16 VI. CONCLUSIONS

and A_ = 26.67 cells, which is normally incident with the | thjs letter an extension of the PML absorbing boundary
BiPML. In order to show the damping of the propagated fiel@ongitions has been developed for bi-isotropic media. We have
a 100-cell-depth BiPML with a parabolic conductivity profilefoyng simple algebraic conditions that guarantee the continuity
was chosen. This provided a normal theoretical reflectie 5| the field components at the interface, which is sufficient
coefficient of —136 and—82 dB for the right- and left-hand for perfect matching. A time-domain version of the equations,
polarizations, respectively. Results-ef10 and—76 dB were aig for harmonic fields, has been discretized with a FDTD
numerically found for the above reflection coefficient at a poighethod in order to test the conditions for 2-D bi-isotropic
placed one cell before the interface. media.
Analytical results for propagation in the unbounded original

medium are also compared to FDTD results in Fig. 1. The
slight differences between the two results, when the distance

from the source point increases, are due to the dispersigtl I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Vitanen,
inherent to the FDTD procedure. azgtfrrgi%natciis\‘/gavl%%jln Chiral and Bi-Isotropic MediadNorwood,

Another 2-D bi-isotropic medium was also simulated with[2] j.-p. Berenger, “A perfectly matched layer for the absorption of elec-
e =1, pr = 1,x, = 0.66 and x, = 0.25, )\+ = 20, and tromagnetic waves,J. Comput. Physno. 114, pp. 185-200, 1994.

_ _ _ : . [3] I. Vill 6 Perez, S. Goralez Garta, R. ®mez Marin, and B. Garda
A- = 40 cells, adapted by a 12-cell depth BiPML medium. Olmedo, “Extension of Berenger's Absorbing Boundary Conditions to

This provided a normal theoretical reflection coefficient of  match dielectric anisotropic mediaJEEE Microwave Guided Wave
—131 and—-65 dB for the right- and left-hand polarizations, _ Lett, vol. 7, pp. 302-304, Sept. 1997.

. . , “Generalization of Berenger's absorbing boundary conditions for
reSpeCt'Vely' Experlmentally,—62 and—54 dB were found 3D magnetic and dielectric anisotropic medillitrowave Opt. Technol.

for the reflection coefficient at a point placed one cell before Lett, vol. 18, no. 2, pp. 126-130, 1998.

the interface. As expected, better agreement between tid S Gonalez Garta, T. Materdey Hung-Bao, R.dnez Marin, and B.

th tical and ical reflecti fficients is f dinth Garaa Olmedo, “On the application of finite methods in time domain
eoretical and numerical re e_C 1on coe _'C'en_ sistoundinthe ., anisotropic dielectric waveguideslEEE Trans. Microwave Theory

100-layer case, due to numerical reflections in each change of Tech, vol. 44, pp. 21952206, Dec. 1996.
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