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Abstract—An extension of Berenger’s perfectly matched layer
(PML) absorbing boundary conditions to adapt bi-isotropic me-
dia is formulated. The method is developed under simple alge-
braic conditions and validated with the finite-difference time-
domain method (FDTD).

Index Terms—Absorbing boundary conditions, bi-isotropic me-
dia, FDTD method, perfectly matched layer.

I. INTRODUCTION

T HE propagation of waves in bi-isotropic media has be-
come a topic of interest during recent years [1]. Starting

from previous extensions of Berenger’s perfectly matched
layer (PML) absorbing boundary conditions [2] for anisotropic
media [3], [4], in this letter we propose a PML medium
(BiPML) to adapt bi-isotropic media. It has been validated and
tested through an implementation of the finite-difference time-
domain method (FDTD) to simulate monochromatic wave
propagation in these media.

II. M AXWELL’S CURL EQUATIONS IN BI-ISOTROPICMEDIA

Waves propagating in source-free bi-isotropic media can
be decomposed into a sum of left- and right-hand elliptical
polarized waves [1] of the form

(1)

with a complex amplitude frequency and propagating
in the direction with wavevector which is assumed
to be real (lossless media) for simplicity. For these waves,
Maxwell’s curl equations can be written as [1]

(2)

(3)

where with the
superindex indicating the transposition of matrices. is the
wavevector matrix given by

(4)

and are the real dielectric and magnetic constants, and
and are the parameters describing the bi-isotropic behavior
of the medium. These latter can be expressed in terms of the
real Tellegen and chirality parameters [1] through
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and with
being the free-space light speed.

The dispersion relation is obtained by enforcing a non-
trivial value of the solution of (2) and (3), obtaining two
wavenumbers for each frequency: one for the right-hand
polarization and the other for the left-hand polarization

: with
and and the relative permittivity and

permeability of the material, respectively.

III. EQUATIONS FOR THEBiPML MEDIUM

Following Berenger’s ideas [2], together with the general
method presented in [3] and [4], the BiPML medium is defined
such that the six-componentsplit fields and in this
medium are

(5)

(6)

related to the three-componentcompactfields
and through

(7)
Let us assume that the propagation into the BiPML of the

split fields can also be decomposed into functions of the form

(8)

with being the complex amplitude and the complex
wavevector in the BiPML medium. These functions will be
made to fulfill equations similar to (2) and (3), but including
anisotropic lossy terms as in [2], as well as a bianisotropic
behavior through the use of two complex matricesand
in the following manner:

(9)

(10)

where is the th-order identity matrix, the split
wavevector matrix

(11)
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is the (6 6) real diagonal matrix

(12)

and is a matrix with a similar form.
Finally, matrix is given by

(13)

and similarly for All the elements of these
matrices will be obtained in the next section by imposing
perfect matching of the BiPML and the bi-isotropic medium.

IV. PERFECT MATCHING

If a wave propagating in the bi-isotropic medium is incident
upon an interface with a BiPML medium, no reflection will
occur at the interface for any angle of incidence, nor for any
frequency, if there is a perfect matching between both media.
A sufficient condition is obtained by enforcing the continuity
of the components of the field in the original medium with
those of the compact field in the BiPML. For instance, for the
interface plane

(14)

The continuity condition implies [3], [4]:

1) phase continuity
with no restriction on ;

2) amplitude continuity .

In order to impose condition 2), let us first extract and
from (9) and (10), respectively, and obtain the compact

fields and through (7). Then, extracting and from
(2) and (3), we finally obtain a system of equations which is
fulfilled for any and if

(15)

and

(16)

The first equality of (15) holds if and are related by
the usual Berenger condition Taking this
into account, and given that (16) holds if

At the phase continuity 1), together with the last
equality of (15), leads to and

Solving the dispersion relation for the BiPML medium
governed by (9) and (10), with the above values for

and it is found that the BiPML, in fact, supports attenuated
waves with wavevector

Notice that the BiPML has turned out to be a bianisotropic
PML medium, which is reduced to Berenger’s PML when the
Tellegen and chirality parameters of the original medium are
null.

V. IMPLEMENTATION AND VALIDATION

With the aim of testing the matching conditions with FDTD,
we need an explicit-in-time difference scheme. For this, time
domain versions of (2), (3), (9), and (10), valid for harmonic
fields, have been used. For instance for (3)

(17)

and for (10)

(18)

with

(19)

where it has been assumed that the values of all the parameters
are known at a given frequency

The FDTD algorithm has been simply obtained by approx-
imating the time derivative of and in (17) and (18) by
second-order finite-centered differences, and the time deriva-
tives of and by the following second-order backward
formula:

(20)

The rest of the discretizations in (17) and (18) have been
performed using a second-order two-node scheme through
finite centered differences and means [5]. The ratio between
the spatial increment and the time increment
has been found to provide stable results for the simulations
shown here.

Since the BiPML is just a generalization of Berenger’s
PML medium, all the details concerning the implementation
of the BiPML (corners, conductivity spatial profile, numerical
measurement of the reflection coefficient, etc.) are treated in
the same way as in [2].
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Fig. 1. Comparison of field profiles at the time stepn = 600 for a chiral medium with"r = 1; �r = 1; �r = 0, and �r = 0:25; adapted
with a 100-cell BiPML.

Fig. 1 shows the spatial profile of the component of a
monochromatic wave propagating in a two-dimensional (2-D)
chiral medium with and
Such a wave is composed of a right- and a left-hand elliptical
polarized plane wave, with respective wavelengths
and cells, which is normally incident with the
BiPML. In order to show the damping of the propagated field,
a 100-cell-depth BiPML with a parabolic conductivity profile
was chosen. This provided a normal theoretical reflection
coefficient of 136 and 82 dB for the right- and left-hand
polarizations, respectively. Results of110 and 76 dB were
numerically found for the above reflection coefficient at a point
placed one cell before the interface.

Analytical results for propagation in the unbounded original
medium are also compared to FDTD results in Fig. 1. The
slight differences between the two results, when the distance
from the source point increases, are due to the dispersion
inherent to the FDTD procedure.

Another 2-D bi-isotropic medium was also simulated with
and and

cells, adapted by a 12-cell-depth BiPML medium.
This provided a normal theoretical reflection coefficient of

131 and 65 dB for the right- and left-hand polarizations,
respectively. Experimentally, 62 and 54 dB were found
for the reflection coefficient at a point placed one cell before
the interface. As expected, better agreement between the
theoretical and numerical reflection coefficients is found in the
100-layer case, due to numerical reflections in each change of

conductivity from layer to layer, more abrupt in the 12-cell
case than in the 100-cell case.

VI. CONCLUSIONS

In this letter an extension of the PML absorbing boundary
conditions has been developed for bi-isotropic media. We have
found simple algebraic conditions that guarantee the continuity
of all the field components at the interface, which is sufficient
for perfect matching. A time-domain version of the equations,
valid for harmonic fields, has been discretized with a FDTD
method in order to test the conditions for 2-D bi-isotropic
media.
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